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Introduction

Throughout, M is an n-dimensional C* differentiable manifold and '™ = (M, L)
a Finsler space equipped with the fundamental function L(z,y) on TM.

Finsler geometry was first introduced by Finsler himself, to be studied by many
eminent mathematicians for its theoretical importance and applications in the vari-
ational calculus, mechanics and theoretical physics. Moreover, the dependence of
the fundamental function L(zx,y) on both the positional argument x and directional
argument y offers the possibility to use it to describe the anisotropic properties of
the physical space. For a differential one-form §(z,dr) = b;(z)dx" on M, Randers
[T7], in 1941, introduced a special Finsler space with the Finsler change L = L + f3,
where L is Riemannian, to consider a unified field theory (L = y/a;;4'y7, a;; being the
gravitational tensor field and b;(z) the electromagnetic potential). Masumoto [11],
in 1974, studied Randers and generalized Randers changes in which L is Finslerian.
Kropina [§] introduced the change L = L?/3, where L is Riemannian. This change
has been studied by other authors such as Shibata [I8] and Matsumoto [9]. Randers
and Kropina changes are closely related to physical theories and so Finsler spaces
with these metrics have been investigated by many authors, from various approaches
in both the physical and mathematical aspects ([3], [11],[20], [22], [23], [24], [26]).
Randers change was also applied to the theory of the electron microscope by R. S.
Ingarden [6]. Moreover, there is some relation between the Kropina metric and the
Lagrangian function of analytic dynamics [I8]. In 1984, Shibata [19] considered the
general case of any 3-change, that is, L = f(L, 3), thus generalizing many changes in
Finsler geometry ([11], [18]). In this context, he studied some special Finsler spaces,
such as C-reducible and Ss-like, under Randers change.

On the other hand, in 1976, Hashiguchi [4] studied the conformal change of
a Finsler metric, namely, L = ¢@ L. In particular, he also dealt with the special
conformal transformation named C-conformal. This change has been studied by [zumi
[7] among others. In 2008, Abed ([1], [2]) introduced the change L = €@ L 4 3,
which he called a [-conformal change, thus generalizing the conformal, Randers and
generalized Randers changes. Moreover, he studied some special Finsler space under
this change such as C-reducible, S3-like and Sy-like.

In [25], the present authors introduced and investigated the more general change
of Finsler metrics:

L(z,y) = L = f(e"WL(x,y), B(z,y)) = f(L,B),

where L = @[ and f is a positively homogeneous function of L and B of degree one.
They obtained the difference between Cartan connection associated with (M, L) and
Cartan connection associated with (M, L), also, they established some interesting
results and computed the torsion and curvature tensors of the transformed space
(M, L) for the four fundamental connections in Finsler geometry. This change is
referred to as a generalized [-conformal change. It is clear that this change is a
generalization of all the above mentioned changes and deals simultaneously with -
change and conformal change. It combines both cases of Shibata (L = f(L,3)) and
that of Hashiguchi (L = e’L).

In this paper, we continue our investigation of the generalized S-conformal change.
Under this change, we study some special Finsler spaces, compute the transformed
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T-tensor, introduce what we call b-condition and study when this change becomes
projective.

The present paper is organized as follows. In section 1, we introduce the necessary
material and background required for the present work. In section 2, we deal with
some special Finsler spaces under a generalized [-conformal change, namely, quasi
C-reducible, Semi C-reducible, C-reducible, Cs-like, S3-like and Sy-like. In section 3,
we compute the T-tensor of the transformed space under a generalized (-conformal
change and study some interesting special cases. In section 4, we impose a certain
condition on the generalized -conformal change, which we call the b-condition, and
investigate the geometric consequences of such a condition. Finally, in section 5, we
give the conditions under which a generalized [-conformal change is projective and
generalize some known results in the literature.

1. Notations and preliminaries

Throughout the present paper we use the terminology and notations of [25]. Let
(M, L) be an n-dimensional C'* Finsler manifold; L being the fundamental Finsler
function. Let (2%) be the coordinates of any point of the base manifold M and (') a
supporting element at the same point. We use the following notations:

0;: partial differentiation with respect to xt,
0;: partial differentiation with respect to y® (basis vector fields of the vertical bundle),
Gij = %&@[P = &@E the Finsler metric tensor; E := %Lzz the energy function,

y'L
>

l, =0, = gijl! = gij%: the normalized supporting element; [* :=
lij = ailj,

hij := Ll;j = gij — l;l;: the angular metric tensor,

Ciji = 30kgi; = 30,0;0,L*: the Cartan tensor,

G": the components of the canonical spray associated with (M, L),
N} = 9;G': the Barthel (or Cartan nonlinear) connection associated with (M, L),

0; = 0; — N/ 8'7,:'the basis vector fields of the horizontal bundle,
G%), := OpN; = 0,0;G": the coefficients of Berwald connection,

= 9" Crp = %girékgrj: the h(hv)-torsion tensor,
Yk = 39" (059kr + Orgjr — Orgjx): the Christoffel symbols with respect to
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2
Ly = 19" (8;9kr + 0kgjr — 6rgjr): the Christoffel symbols with respect to 4,

(T, N7, C%,): The Cartan connection CT'.
For a Cartan connection (I, N}, C4), we define
Xiy = 0 X+ XJ'T,, — X, I the horizontal covariant derivative of X7,

Xl = 0u X! + X"C? ), — XL,Ci: the vertical covariant derivative of X,

Let F™ = (M, L) be an n-dimensional Finsler space with a fundamental function
L = L(z,y). Consider the following change of Finsler structures, which will be called
a generalized [-conformal change,

L(z,y) = L(z,y) = f(e" L(x,y), B(x,y)) = f(L, B), (1.1)
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where f is a positively homogeneous function of degree one in L =¢"L and £ and
B = bi(z)dz’. Assume that F° " = (M, L) has the structure of a Finsler space. Entities
related to F will be denoted by barred symbols.

We define
of of D’ f
=, = =, =, etC,
fi Y3 Jo a5 J12 9T03
where L = e L. We use the following notations:
q::f.an p::ffl/La
Qo = ffo, po = f3 + q,
q-1 = ffi2/L, p-1:=q-1+ (pf2/f),

g2 = f(e"fur = (fi/L)/L?,  p-o:=qoa+(e7p?/f7).

Note that the subscript under each of the above geometric objects indicates the degree
of homogeneity of that object. We also use the notations:

9o

B
Proposition 1.1. Under a generalized [5-conformal change, we have:
(a) ;= e fili + fobi,

(b) hij = e”p hij + Gom;my,

m; = b — (B/L*)y; # 0,  poz ==

(¢) G =€"pgij + pobibj + e p_1(biy; + bjyi) + €“p_ayi ;.
(d) The inverse metric ¥ of the metric g;; is given by

g7 = (e77/p)g" — 500V — s_1(y'V +y'b) — s_ay'y’,
where
so:=e " f2q/(epLl?), s_1:=p_1f*/(pel?), s_o:=p_1(e"m*pL* — b*f?)/(epBL?),
e:= fHep+miq)/L* #0, m*=g"mym; =m'm; #0, b = g7b;.
Remark 1.2. The quantities sy, S_1, S_o satisfy:

Bso+ L?s_1 = q/e,

b?s_1 + Bs_g = e“p_1m?/e.

Let C; = Cyrg’*, C' = C’jkgjk and C? = C'C;. Then, we have
Proposition 1.3. Under a generalized -conformal change, we have

(a) The Cartan tensor Ciji has the form

Cijk = €¢7p Ciji + Vijr, (1.2)



(b) The (h)hv-torsion tensor Ui.j has the form

Yo e 1
where o
e’'p_ p
Vijk = 5 L (hijmy, + hym + higimy) + %mim]’mka (1.4)
1, . -
Milj — 5(e m!/p — m?(sob' + $_1yl))(p02mimj + e7p_1hij)

—e7 (sob' + s_19") (p Cijp + p_1mim;) + %(hﬁmj + hmy),
and b = g"'hy;, Cijp = Cijpb", Cigg == Cijeb! b and so on.
(C) U@ - CZ — 60]9 Socigﬁ + >\mi,

(ntDpoy _ 3e"pam’so  poom®
2p 2 2(e”p + qom?)’

where A :=

(d) ' = %Ci+J%

e 7
b

where J':= m' — 50Chs — (Cg + Am® — “sop Capa) (sob" + s_1y'), Cg:= Cib'".

(e) T° = %C%@,
where  ® = X\*m?*((e™7/p) — som?) + Ca((2Ae™7 /p) — so(1 + 2Am?))

+S(]Cﬁgﬁ(1 — 3\ + 6080]) Cg)
+50C,55(€” sgp* Capab” — Asom®b" — €7 sop Clyy — 2C7).

Proposition 1.4. Under a generalized (3-conformal change, the v-curvature tensor
of (M, L) is transformed as follows:

glijk = €7 pSuji + jp{ Hihi; + Hijhye + winCijg + wijCust,
where

1
Hij L= Klmimk + KQCZ'jﬁ + K3h'ij7 wij = K4m2-mj — 5620]928002‘]'5,

20 ,,2 o 2 o
eTPy, o 2 € P—1Po2M e’p_1 14, 2
K, .= e 7 —=2sgpm )+ ——"-—— Ky:=—— — —e“5gpp_1m”-,
20,2 2 -
e m e
Ky:= P g CPP2 2oy,

8(eop+qom?)’ 1T 2(e"p + gom?)

Remark 1.5.
The tensors H;; and w;; defined above have the following properties:

(1) H;; and w;; are symmetric.

(2) Hi; and wi; are indicatory: Hyy' =0, wiy' = 0.
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(3) g"H;; = Kym? 4+ KoCs + (n — 1)K and  gYw;; = Kym? — 12 50p*Cp.

Proposition 1.6. Under a generalized 5-conformal change, the vertical Ricci tensor
St and the vertical scalar curvature S associated with the transformed space (M, L)
are given by:

—0

Sir. = Sir. + Khiy, + <$0m2 -
(n—3)p

) Hi, + Vi,

o —o 2=

=254+
p

K{(n — 2) — e"psom2} - SO\Ifgﬁ + 6—\11 — Sosikbibk,
p
where

K = soHss — %(Klnf + KaoCs + (n— 1)K3),

e 1

\Ifik = T{WNCCZ'TB + wTngﬁ — (K4m2 — 562080p205)0ik5} — so{Hﬁkmi -+ Hiﬁmk
—HuBkag + wigckgg — wﬁﬁcikﬁ - wik0555 + €opSh,~jkbhbj},

Hﬁg = Hljblby, wpp = wijbibj, V.= \Ifijgij, \Ifﬁg = \If“blbj

Note that the tensor U;; is symmetric and indicatory.

2. Special Finsler spaces

In this section we will investigate the effect of the generalized S-conformal change
(L) on some special Finsler space. Some of the results obtained in this section are
generalizations of known results and some are new. For a systematic study of special
Finsler spaces, we refer to [27].

In what follows, let (M, L) be a Finsler manifold and (M, L) the transformed
Finsler manifold under a generalized [S-conformal change. The geometric objects
associated with (M, L) will be denoted by barred symbols.

Theorem 2.1. For n > 2, under a generalized [-conformal change, the following
assertions are equivalent

(a) p_1 =0.

(b) ¢ =kp; k is a nonzero constant.

(c) Cijx = e“pCijp.

(d) T = (Ke* L>+kB?)z2; K is a nonzero constant.

The special B-conformal change (d) is referred to as an energy [5-change [28).

Proof.
(a) =(b): Let p_; =0, then @ + p—f2 = 0 which leads to ffi2 + fifo = 0, hence,

f
0
a—z( ff2) =0. By integration, taking the homogeneity of f into account, we get



q = kB, with k # 0.

0
(b)=(c): Let ¢ = kf5, then 8_E(ff2) = ffia+ fifo =0, which leads to p_; = 0.
Using Bpo + e L*p_1 = q, we get Bpy = q. By differentiating the last identity with
respect to [, we have
Bpoz +po = f3 + ffa2 = po,
which leads to pgy = 0. Hence, by ([I4) Vi;x = 0 and, consequently, C;;x = e“pCijp.
(c)=(d): Let V;;5, = 0, then
e”p_l(hijmk + hjkmi + hmmj) + Po2mm;m;my, = 0.

By contraction by b, we have

e p_1(2m my + m*hjg) + poam*mymy, = 0. (2.1)

Contracting (ZI) again by ¥/, we get 3e“p_; = m?pga. Hence, ([ZI) reduces to
p-1(m?hjr — m;my) = 0, which leads to p_; = 0 or m?hj, — mymy = 0. Now, if
m?hjr — mymy, = 0, then, n = 2 which contradicts the hypothesis. Hence, p_; = 0,
and consequently, ¢ = k5. Then, we have the partial differential equation

[f2=kp.

By integration with respect to 8 and using the fact that f is homogenous of degree
1in 8 and L, we get _

f2 = kB + (L),
where go(z) is a homogenous function of degree 2 in E, which may be written as
(L) = K'L* Hence, f* = k3% + k'L? and consequently,

L= (KL* + kB%)? = (Ke* L + kB?)2.
(d)=-(a): It is obvious. O

Corollary 2.2. For n > 2, under a generalized 3-conformal change, if one of the
above equivalent conditions holds, then the space (M, L) is Riemannian if and only if
(M, L) is Riemannian.

We will study the change of some special Finsler spaces under a generalized (-
conformal change.

Definition 2.3. A Finsler space (M, L) with dimension n > 3 is said to be quasi-C-
reducible if the Cartan tensor Cij;, satisfies

Cijr = Qi;Cr + Qs + Qi €}, (2.2)

where Q;; is a symmetric indicatory tensor.



By Proposition [L.3, assuming A # 0, we have

o

2l o € p—l
Cijr = e“pCiji +

(hijmk + hjkm,- + hk,m]) + %mimjmk

1
= e7p Cyjp + 66ijk{(360p—1hij + poarmmy)my. }

1 J—
= e"p Cijk + agwk {(3e°p_1h,-j + p02mimj)(0k - Ck + eapSOCkﬁB)}
1 —
= e"pCiyr + 6_)\6ijk {(8e"p_1hij + poarmim;)Ci }
1
T Out {(3e"p-1hij + poamim;) (€ psoCrap — Ci)} -

Hence, we have

Lemma 2.4. Under a generalized [3-conformal change, the transformed Cartan tensor
can be written in the form

Cijk = Siji, {@ijék} + Qijk,

where Q; = 5 (3¢7p_1hij + peamim;),

1
Qijk ‘= 6_)\6ijk {2e7Ap Ciji. + (3e“p_1hij + poamim; ) (€7 psoCras — Ci) } -

By the above lemma and taking into account that the tensor ()
and indicatory, we get the following result.

;j 18 symmetric

Theorem 2.5. If the tensor g = 0, then the space (M, L) is quasi-C-reducible.

As a corollary of the above theorem, we obtain a generalized form of Matsumoto’s

result [14]:

Corollary 2.6. Under a generalized 5-conformal change, a Reimannian space (M, L)
is transformed to a quasi-C-reducible space.

Definition 2.7. A Finsler space (M, L) of dimensionn > 3 is called semi-C-reducible,
if the Cartan tensor Cijy, is written in the form:

r

t
Ciin = v
ik n+1

(hijCk + hiuCy + hjnCy) + o2

CiC;C, (2.3)

where r and t are scalar functions such that r +t = 1.

The next result has been obtained by Matsumoto and Shibata [16] in the special
case of Finsler spaces with («, f)-metric.

Theorem 2.8. A Riemannian space is transformed to a semi-C-reducible space, by
a generalized [3-conformal change.



Proof. From Proposition [LLT] and Proposition [L3], we get

_ 1
Ciji = 56’029—1(}%]'77% + hjmi + hiim;) + §p02mimjmk

= , m? —3p_
P-1 & ' Crj) + (ppoz p 1610)

— C,C,Cy,
2pA(e?p + m2qy)C

where )
_paln+1) ~ m*(ppo2 — 3p-1qo)
r="—"’ =
2pA 2pA(e7p + m2qq)

which means that (M, L) is semi-reducible. O

, r+t=1,

Definition 2.9. A Finsler space (M, L) of dimension n > 3 is called C-reducible if
the Cartan tensor Ciji, has the form:

Define the tensor

It is clear that Kjj, is symmetric and indicatory. Moreover, Kj;;, vanishes if and
only if the Finsler space (M, L) is C-reducible.

Proposition 2.10. Under a generalized 5-conformal change, the tensor Kjx associ-
ated with the space (M, L) has the form

Kijr = e"pKji + diji,

where
1
dijk = H—HGW{(n + 1)(0&1h,’j + agmimj)mk + qomiijk
+(sopgomim; + egpzsohij)ckﬁﬁ}v
L7 n+1 "7 6 n+1

Consequently, we have
Theorem 2.11. Under a generalized B-conformal change, the following assertions
(a) the space (M, L) is C-reducible,
(b) the space (M, L) is C-reducible
are equivalent if and only if the tensor d;ji, vanishes.

Corollary 2.12. Iif = e’ L + B, L being Finslerian, then the tensor d;;, vanishes.
Consequently, (M, L) is C-reducible if and only if (M, L) is C-reducible.



Lemma 2.13. Under a generalized 3-conformal change L = f(e°L, 3), with L Rie-
mannian, the tensor d;;, takes the form

diji, = Gi'k{alhi'mk + agmim-mk}.
J J J J

Theorem 2.14. Under a generalized 3-conformal change L = f(e°L, ), with L
Riemannian, the following assertions are equivalent:

(a) a1 =0 and oy =0,
(b) (M, L) is C-reducible,
(c) (M, L) is either of Randers type or of Kropina type.
Proof.
(a) =(b): It is obvious. B
(b) =(a): Let the space (M, L) be C-reducible, then, by Lemma 213 we have:
diji = Gijp{aghiymy, + aemym;my} = 0. (2.5)
Contracting ([Z3) by ¢¥, we get
(n+ 1)a; + 3m*ay = 0, (2.6)
and contracting the same equation by b0/, we get
ay +m?ay = 0. (2.7)

The last two relations lead to (n — 2)ay = 0. Since n > 2, then a; = 0 and conse-

quently ay = 0, by 2.1).
(a) =(c): If oy = ay =0, we have (n+ 1)p_1 = 2pA and (n + 1)pg2 = 6¢goA. Solving
the last two equations for A\, we get

3qop—1 = ppoz2-
From which we obtain the patrial differential equation

3f12f22
S

Now, if fys = 0, by integration with respect to 8 and taking the homogeneity of f
into account, we get fo = p1(L), where ¢1(L) is a homogenous function of degree 0
in L. Hence, by integrating f, with respect to 3, we get

— fa22 = 0.

L= 801(2)5 + 802@),

where ¢2(E) is a homogenous function of degree 1 in L. By the homogeneity properties
of ¢1(L) and ps(L), using Euler theorem, we conclude that (L) = ¢; and (L) =
c9, where ¢; and ¢y are constants. Consequently,

f = CQZ + Clﬁ.
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On the other hand, if fy; # 0, we have
3fi2  fa

)
f1 Jo2
which, by integration with respect to [, gives
a T G-
31n .fl —1In f22 =1In (pg(L) = f_ = (pg(L) = CgL,
22

where @3(5) is a homogenous function of degree 1 in L and c3 is nonzero constant.
Using L fi1 + Bfi2 = 0 and Lfy + Bf2e = 0, we have

@ _ 0352
7

L

\/ cs3fB? + c4z2
1 —
[=—=\eB?+cl? + ¢,

Cy

from which f; = . If ¢4 # 0, then

and if ¢4 = 0, then N
f= :
c33
The former may be regarded as of Randers type and the later as of Kropina type.

(c) =(a): The result follows directly by computing a; and ay for Randers and
Kropina spaces. O

It should be noted that Matsumoto [9] showed that C-reducible Finsler spaces
with («, #)-metric are either of Randers type or of Kropina type.

Definition 2.15. A Finsler space (M, L) of dimension n > 2 is said to be Cy-like if
the Cartan tensor Cyjj, satisfies

Let us define the tensor
Nijk = C*Cijr — CiC;Ch..

It is clear that 7;;; is symmetric and indicatory. Moreover, 7;;; vanishes if and
only if the Finsler space is Cy-like space.

Proposition 2.16. Under a generalized -conformal change, the tensor 1;;;, associ-
ated with the space (M, L) has the form

Nijie = Nijk + Lijk,

11



where

Liji == (e_"/p)C'2V,-jk + ©(e?pCliji + Viji) — Agmim]—mk
=22 (mympC; + mym;Cy + mimyC;) — A(my,C;C; + m;CyCi + m;C;Cy)
—e7psolCips{e’psoCrpp(Am; — C; — €“psoClpg) + € psoCiga(Amy, + Cy)
A Cj + m;Cy — dmymy,) — C;C} + Crpp(CiC5 — €7psoCiCligp + Am;C;
+Am;C; + Azmimj) + ACpp(Ammy, + C;C + m;Cy, + myC; — €7 psom; Crpp)).

Theorem 2.17. Under a generalized B-conformal change, the following assertions
(a) the space (M, L) is Cy-like,

(b) the space (M, L) is Cy-like

are equivalent if and only if the tensor I;j, vanishes.

Lemma 2.18. Starting with a Riemannian space (M, L), under a generalized (-
conformal change, the tensor I;;, takes the form:

]ijk = (I)‘/Uk — >\3mimjmk. (29)

Theorem 2.19. For a B-conformal change L = e’L + B; L being Finslerian, a
necessary condition for the assertions

(a) the space (M, L) is Cy-like,
(b) the space (M, L) is Cy-like
to be equivalent is that Cg = 0.

Proof. In the case of L = e°L + 3; L being Finslerian, ® = \e =7 L(Am? + 2C5)/L,
A= "2—%1 and Vi, = %(hijmk + hjxm; + hkim?-). Now, let the above assertions be
equivalent, so I;;; = 0. Contracting ([Z3) by ¢’*, we have ”2—%105 = 0 and the result

follows. O

If (M, L) is a Riemannian space and the tensor I;;; vanishes, i.e., (M, L) is Co-like,
we have

2
2 m

W(€Up_1(hijmk + hjkmi + hkzm]) + pogmimjmk) — 2)\3mim]—mk = 0,
contracting by b'¥ and assuming that \ # 0, we get
(n—2)p_y =0. (2.10)

Hence, we have

Theorem 2.20. Starting with a Riemannian space (M, L), if the transformed space
(M, L) is Cy-like, then one of the following holds:

(a) dim M = 2.
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(b) The generalized [5-conformal change is an energy [5-change and the transformed
space s Rimannian.

Corollary 2.21. Let the generalized 3-conformal change be of the form L=¢"L+p3,
with L Riemannian. If (M, L) is Cy-like, then dim M = 2.

Corollary 2.22. A Reimannian space of dimension > 3 can not be transformed to a
non-Reimannian Cy-like space.

Now, we are going to study two special Finsler spaces whose defining property
depends on the v-curvature tensor Sj;;, namely, the Ss-like and Sy-like Finsler spaces.

Definition 2.23. A Finsler space (M™, L) with dimension n > 3 is said to be S3-like
if the v-curvature tensor Syji, satisfies

S
(n—1)(n —2)

where S is the vertical scalar curvature.

Shijk = {hikhij — hijhu}, (2.11)

Define the following tensor

S
n—1)(n—2)

Hiijl = Slijk - ( {hikhlj — hzyhlk}

It is clear that the tensor p;, vanishes if and only if the space is Sz-like.

Proposition 2.24. Under a generalized (3-conformal change, the tensor iy, asso-
ciated with the space (M, L) has the form:

My, = €7 Pluaijh + Tlijk,
where
620p2Q
(n—1)(n—2)
q0

Dy S T PD hamum; + hiymamy))

rige = L{Hihij + Hijhe + wigCpij + wiiCoa — hijhig

—0

- | )
Q= S0 — Sy — s gs + o
p

K(n —2 — e psom?).

Theorem 2.25. Under a generalized B-conformal change, the following assertions
(a) the space (M, L) is Ss-like,

(b) the space (M, L) is Ss-like

are equivalent if and only if the tensor 1y, vanishes.

Proposition 2.26. For a 3-conformal change L = e° L+ 3, the tensor 1y, takes the

form
2

1 m
Tk = Cgjrha + imjmkhil + Ehjkhil — Aghjihy,
where Ag = ﬁ (C’g + ’;—J%lmz).
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From the above proposition, we retrieve a result due to Abed [1]:

Corollary 2.27. In the case of a B-conformal change L = e°L + B, the following
assertions

(a) the space (M, L) is Ss-like,
(b) the space (M, L) is Sz-like

are equivalent if and only if

| m?
erkb + imjmk + Ehgk = Aghjk.

Finally, we study Sy-like Finsler spaces under a generalized -conformal change.

Definition 2.28. A Finsler space (M, L) with dimension n > 4 is said to be Sy-like
if the v-curvature tensor Sh,ji satisfies

Stije = Xjp{hy;Mig + hi M5}, (2.12)
1 Shi,
where Mzk = m {Szk - m}

Define the tensor
Cijie = Stk — Wji{ hiMr + ha My}
It is clear that the tensor (y,;; vanishes if and only if the space is Sy-like.

Proposition 2.29. Under a generalized generalized (3-conformal change, the tensor
Chiji. associated with the space (M, L) has the form

~ o
Cuiji = € PCQiijk + Eijks

where

s ep
Eiijk © = Stijk{winCijsb® + qoMypmm; + 3(30m2H1khz’j + Khyghij + Vichij)

e’ e 7qpS Qp(e?phy, + gomymy,) i
_ hy; hy; % g0 hyrinym;
n—3 (2(n—2)mlm’“ 7 2(n — 2) § € ot ki
qo 9 . Qe p?
S U —(n— Hy — —P ) mam, ),
+(n Y ( ik + (sopm® — (n — 3)e™ %) Hy =) lk) m;m; }

and

S XuYij b o= XuYi; + Xij Y — XY — XanYly.
Theorem 2.30. Under a generalized B-conformal change, the following assertions
(a) the space (M, L) is Sy-like,
(b) the space (M, L) is Sy-like

14



are equivalent if and only if the tensor ep;ji vanishes.

In the case of a 3-conformal change L = €L + 3, the tensor e, vanishes and
we retrieve the the following result of Abed [1J.

Corollary 2.31. For a of B-conformal change L = e°L + B, the space (M, L) is
Sy-like if and only if the space (M, L) is Sy-like.

3. The T-tensor T},
The T-tensor is defined by [10]
Thijkk = LChijly, + Chijli + Chikly + Chjuli + Cijiln,

It should be noted that the T-tensor has a great contribution in geometric properties
of special Finsler spaces. For instance, Hashiguchi [4] has shown that a Landsberg
space remains Landsberg under a conformal transformation, if and only if T3, = 0.
On the other hand, Matsumoto [I2] has obtained interesting results for spaces with
Trijr = 0 and, further, he investigated the three-dimensional Finsler spaces with
vanishing T-tensor.

In this section we compute the T-tensor under a generalized S-conformal change
and consider some interesting special cases.

Theorem 3.1. Under a generalized [3-conformal change, the transformed T-tensor
takes the form:

= e’pL pe’p_y
Tijk = (——— 572

5 Ezgk L + 2K3)(hlzh]k + h’l]hzk + h’lkh'zy)
+(hivje + hijvie + hijui + hjrva + hgvi; + higvin)

(
1
+(e7pfa — 56 “Lp- 1)(Crijmy; + Cijmy + Cium; + Cliemy;)

—L(M;;Cig + MjiCirp + MyCiing + Mi.Cijs + MjCip + My.Clip)
_ 1—
+L€2080p2(cij501k5 + Cljﬁcikg + CilﬁCjkg) + §L(6K5 + p022)mlmimjmk

Lpoz 1

5T ———(niymEmy + nggmym;) + 2p02(n”mkml + nymimy;)

where

., . - 3e7p2; | Bpoz Le7p_,
Vij = 56 P-1M; — L(K1 + 1 + 52 )mimj - — 57 Ny,
9 o 4e’p_ipoz + pgem®

Ky = e’
5 €7 Sop_4 4(6Up—|—q0m2)

hij = limj -+ ljml

15



Proof. One can show that

8k6lij = €op3kczzg + €7 p_1(Crijmu + Cijemy + Clemy + Crimy;)
6 2|

5T (hhn]k + hl]nzk + h,]nlk + h; ki + hlkn,] + h; kn]l)

_ Pe’p- Bp
972 ! (hlihjk + hljhik + hlkhij) 215)22 (hwmkml + hllm]mk + hklm i
—l—hjkmlmi + hikm]—ml + hljmimk) + §p022mimjmkml
_ Po2
5T (n”mkml + nyem;ms;) (3.1)

where Ni; = limj + ljmi and Po22 ‘= %pog. Slmllarly,

1
+ §€Jp—1(01jkmi + Cukm; + Cijemy + Cyijimy,)

1
+K4(Clkgmim]' -+ Cijgmlmk) + (Kl —+ 4—pegp2_1)(hijmkml + hlkmimj)

6ijr61k = erCijT,ClTk

+2K3hijhi + Ko (Cirghij + Cijghur) — Ksmimimymy, — €27 p*s0Cii5C1s
60292—1
4p
Using ([B.)) and (3.2)), we get
Cuijly = 0Chij — Clp Couij — Cy, Crptj — C Cri
Be’p_y
212

1
+§6Up—l(cljkmi + Cugmy; + Cyijemy + Cijimy) —
6’ 2|

2L

+ (hlimjmk + hjkmhmi + hikmjmh -+ hﬂmimk), (32)

= 60]9 Clij|k - ( -+ 2K3)(hllhjk + hljhik -+ hlkhij> -+ 3K5mimjmkml

2L (nwmkml + nymym;)

———(hyinji + hynig + hijrue + Ry, + hijnu, + higngg)

3e7p?
—(Kl + 1p ! + g?;)(hijmlmk + hlkmimj + h”mjmk + hjkmlmi
+hgmymy + hjymimy) — (M;;Cis + M Crikg + MyClirpg + MixCijp
_'_Mjkcilﬁ + Miijlﬂ> + e2c’sop2(Cinglk5 + Cljﬁcikg -+ C’ilﬁCjkﬁ), (33)
where Mij = K2hij + K4mimj.
The result follows from (B.3)), Proposition[[.3land the definition of the transformed
T-tensor

Thijk = ZUhika + Um-ﬂk + Uhi]jj + Uhj,ji + Uijljh. ]

The transformed T-tensor for some important special Finsler spaces can be de-
duced from the above result.

Corollary 3.2. Under a Kropina change, L = L*/3; L being Reimannian, the trans-
formed T-tensor takes the form:

—2

_ 2L 2
Tiijk = T2 5 (Muihji + Tughi + haghig) + GLo g (i + hygmamy + hygmymy,
6L’
+hjkmiml + hlkmimj + hikmjml) + mmlmimjmk. (34)
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It is to be noted that the above result is also obtained by Shibata [1§].

Corollary 3.3. Under a conformal change L = ¢ L, the transformed T-tensor takes
the form

m __ 30
Tje = €7 Tiji

Corollary 3.4. Under a Randers change L = L + 3, L being Riemannian, the T-
tensor takes the form:
O

T = —m(

huihji + hijhi + haghig),
where ©, := L*V* + 3% + 2L3.
The above case has been studied by Matsumoto [11].

Corollary 3.5. Under a 3-conformal change L = e’ L + 3; L being Finslerian, the
transformed T-tensor takes the form:

oL e’©
Tyj, = ?Tlijk - m(hlihjk + hyjhi, + haghig)
e’ L
+§(Clijmk + Cijkmu + Ciiemy; + Crigm)
e’ L
_i(hijclkﬁ + hjiCikg + hiCirp + hixCijg + hiCus + hitCiig),

where © = L*b* + 32 + 2¢° LS.

Corollary 3.6. Under a 3-conformal change, a necessary condition for the vanishing
of the transformed T-tensor is that
(n? = 1)

T = A
ALT L

(n—1)L

Cp,

where T = g" g'* Tt

4. The b-condition

In this section we introduce and investigate what we call the b-condition. We
study the effect of subjecting some special Finsler spaces to this condition. In the
following we assume that we are given a generalized 3-conformal change L = f(e° L, 3)
with 8 = by’ = bly;.

A Finsler manifold (M, L) is said to satisfy the b-condition if

Theorem 4.1. For n > 2, the following two assertions are equivalent:

(a) The b-condition is invariant under a generalized [3-conformal change.
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(b) The generalized 5-conformal change is an energy [-change.

Proof.
(a) =(b): Let b'Cyj, = 0. Then, b°Cyj, = 0 and we have, by Proposition [3]

e’ p_1(m*hji, + 2mymy) + poam*mymy, = 0.
Contracting by &, we get 3e’p_1 = —m?pge. Hence,
e”p_l(m2hjk —mymy,) =0,
contracting again by ¢’*, we get
(n—2)p_, =0.

Since n > 2, then p_; = 0 and hence the result follows from Theorem 2.1
(b) =(a): Let the generalized S-conformal change be an energy (-change. Then, by
Theorem [Z], we obtain C';;;, = e’p C;jx. Hence the result. O

Theorem 4.2. Under a generalized Randers change, if (M, L) satisfies the b-condition,
the generalized Randers space (M, L) can not satisfy the b-condition.

Proof. Let (M, L) satisfy the b-condition b'Cy;; = 0. If (M, L) satisfies the b-
condition, then b’?ijk = 0, and consequently,

1
—bZ(QLCijk -+ hijmk + hjkmi + hikmj) =0,

2L
or I . : B
ﬁ(m gk + 2mymy) =0,
which, by contraction by ¢7*, vields a contradiction: n = —1. O

Theorem 4.3. Consider the generalized [5-change (I1]). In each of the following
cases

(a) two-dimensional Finsler space,

(b) three-dimensional Finsler space satisfying the condition L(x, —y) = L(z,y),
(¢) quasi-C-reducible space with b'VQ;; # 0,

(d) C-reducible space,

(e) The transformed space (M, L) with L Riemannian,

if the given Finsler space (M, L) satisfies the b-condition, then it is Riemannian.

Proof.

The proof of (a) and (b) runs on in a similar manner as given in [15] for a concurrent
vector fields.

(c) Contracting (2.2) by b’ , we get

18



Hence, Cy = 0 for b0/ Q;; # 0.
(d) Contracting (2.4]) by b'd7, we get

mZCk = 0.

Consequently, C = 0.
(e) Let (M, L) be a Finsler space with («, 3)-metric, then

— e’p_
Cijk = Tl(

Poz

h,’jmk + hjkmi + hk,m]) + 9

mgm;meg.

The condition that v'Clj;, = 0 leads to
eap_l(m2hjk + 2m;jmy,) +p02m2mjmk =0.
Contracting by o/, we get 3e’p_; = —m?pge. Hence,
e"p_l(mzhjk —mjmy) =0,
which, by contracting by ¢7*, vields
(n—2)p_1 = 0.

Thus, if n = 2, the result follows by (a) and if p_; = 0, then pp; = 0 and hence
Cijr = 0. O

Theorem 4.4. A semi-C-reducible Finsler space satisfying the b-condition is either
Riemannian or C2-like.

Proof. Contracting [Z3)) by »/b*, we have rm2C; = 0. Since m? # 0, then either
r = 0, which implies that the space is Cs-like, or C; = 0, which implies that the space
is Riemannian. O

Theorem 4.5. If an Ss-like Finsler space (M, L) satisfies the b-condition, then its
vertical curvature tensor Sp;jr vanishes.

Proof. Contracting (211 by b', we get

Again, contracting (1) by ¢, we have (n —2)Smy = 0. Asn > 4 and my, # 0, it
follows that S = 0 and consequently, Si;;r = 0. O

Lemma 4.6. If a Finsler space satisfies the b-condition, then we have b'|;, = 0 and,
consequently,

Cijh|kbh — Cijk|hbh — 0

Proof. From the definition of vertical covariant derivative of Cartan connection, we
have

bi|h - ahbl + merinh = a‘h(bjgij) = (3hbj)gij + bjahgij =
and hence C’Z-jk|hbh = Cijh\kbh _ (Cijhbh)|k —0 -
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It is well-known that if (M, L) is Riemannian, then the T-tensor vanishes. But
the converse is not true in general. The next result shows that the converse is true
in the case where (M, L) satisfies the b-condition.

Theorem 4.7. A Finsler space satisfying the b-condition is Riemannian if and only
if the T-tensor Tji, vanishes.

Proof. 1t is clear that if the space is Riemannian then the T-tensor vanishes. On the
other hand, if the T-tensor vanishes, then

Lohij|k ‘l‘ Chijlk ‘l‘ Chiklj + Chjkli ‘|— Cijklh - 0
Contracting by b?, using Lemma [£.6] we have %C’hjk = 0. Hence C;;, = 0. O

Let us write
By contracting (£2]) by °, making use of Lemma L8, we have
Hence, we have

Corollary 4.8. A Finsler space satisfying the b-condition is Riemannian if and only
if the tensor T;; vanishes.

5. Projective change and generalized [S-conformal
change

In this section we will be guided by Matsomoto [I3] and Shibata [I§]. For two
Finsler spaces (M, L) and (M, L) with the same underlying manifold M, if every
geodesic on of (M, L) is also a geodesic of (M, L) and vice versa, the change L — L
of Finsler metrics is said to be projective. A geodesic on (M, L) is characterized by

2G = [
dt _'_ wy ) dt y )
where w = (d®s/dt?)/(ds/dt)* and G'(x,y) = 37i47y" is the canonical spray of
(M, L). We are going to find out a condition for a generalized (-conformal change to
be projective.
Consider the left hand side of Euler-Lagrange equations

da
dt
Proposition 5.1. Under a generalized 3-conformal change L= f(e?L, B), the func-
tions (21) are transformed according to

fEi = Le"p&; + Lagmim” &, + i, (5.2)
where
pi = L*¢"po; — (pLe’l; — qoff m;)oo + 2qFoi — qoEoom, (5.3)
1 1
g; ‘= @-a, E = i(bl‘] - bj|i)7 Ez = i(bl‘] -+ bj|i>7

oo =0y’ Foi = Fuy', Egp = Eiy'y’.
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Proof. Making use of the homogeneity of f, E; can be computed as follows.

& =0~ ()

, d
= fl(O'iﬁ’UL + e"&-L) + fg(Nzrbr + bj|i yj) — E(6Uf1li + fgbl)

. dl; d
= ho Lt fie" DL+ foNibe + by’ — oy — e — et O
d .
_bzd—];z — fg(bl‘] yj + Nlrbr)
_ a o o df2
= f1€ 52 + flLO'Z'e - f10'0€ ll + 2f2F0i - Wml (54)
Using the relation ayr = y°0syr + grsd—y, the last term dfe of (B4) is given by
dt dt dt
dfs . dL dps
P fo1 o + [ 7
B faz dy" de? dy"
= —=Z(eyY"0,L + €%, L E N by® +bp——
oo (Y Lt 7l & L) & foa(Bioo + Nobry™ + b, =50)
= faallpo — L foomym"E, — B fa200. (5-5)

Now, substituting (R.5]) into (£.4]), we get
f& = Le“p&; + qoLmym” E, + L*e"po; — (pLel; — qofs mi)oo + 2qFo; — qoEoom;
= Lpe?&; + qoLm;m"E, + ;. O

Theorem 5.2. A generalized 3-conformal change is projective if and only if the vector
; vanishes.

Proof. Let the generalized [-conformal change be projective. Then, & = 0 is equiv-
alent to &; = 0 and consequently, ¢; = 0 by (E5.2).

Conversely, if p; = 0, then (5.2) shows that & = 0 implies £ = 0. On the other
hand, if £ = 0 and ¢; = 0, then e”p&; + gom;m"E, = 0. Contracting the last equation
by m!, taking into account that e“p + m?qy # 0, we get &m” = 0. Consequently,
E=0. O

From the above theorem, we retrieve the following two results due to Shibata [19]
and Hashiguchi and Ichijo [5] respectively.

Corollary 5.3. A (B-change is projective if and only if  2qFy; = qoFEoom,;.

Corollary 5.4. A Randers change is projective if and only if Fyo; = 0, that is, b; is
gradient.

The following two results are a generalized version of Shibata’s result [19] and
Matsumoto’s result [13].

Theorem 5.5. Assume that the generalized (-conformal change (1)) is projective
and L is Minkowskian, then the Weyl torsion WZ and the Douglas tensor b?jk of
(M, L) vanish. Consequently, (M, L) with dim M > 2 is projectively flat.

21



Proof. The Weyl torsion tensor is given by [13]:

o 1 o >
Wi =Rij + = 6o {y Ry + 0},

ijhy

where R,] —R" Rj = nH(HROJ +R]0) and R”k is the h-curvature of the Berwald

connection. Since (M, L) is Minkowskian, thenRZ]k = 0, and so é” :}OZ = 0.
Consequently, Wh = 0. By the invariance of Wh under a projective change, we have
The Douglas tensor is given by [13]:

Dzyk szk +— (yhplj‘k + 6(%]7k){6zhpjk})7

n+1

o

where P,] —Pwh, Pwk is the hv-curvature of the Berwald connection and | denotes
the vertical covariant derivative with respect to the Berwald connection G%.. ;- oince

(M, L) is Minkowskian, then Ph “x = 0, and so sz =0. Consequently, Dl =0. By
the invariance of ngk under a projective change, we have DZ] = 0.
Finally, as Wh =0, ngk =0 and dim M > 2, (M, L) is thus projectively flat

[L3]. O

Theorem 5.6. Assume that the generalized [-conformal ch(mge 1s projective and L

is Riemannian, then the projective hv-curvature tensor ngk of (M, L) vanishes.

Proof. Since (M, L) is Riemannian, then Pmk = 0, and ﬁij = 0. Consequently,

Dw x = 0. By the invariance of Dz’-‘jk under a projective change, we have E?jk =0. O

Theorem 5.7. If ¢; = 0, then (M, L) is of scalar curvature if and only if (M, L) is
of scalar curvature.

Proof. According to Szabé [21], a Finsler space is of scalar curvature if and only if
Wh = 0 vanishes identically. Let ¢; = 0, then by Theorem the generalized (-
conformal change is pIOJectlve Now, let (M L) be of scalar curvature, then Wh 0.

But W = WZ’]‘, hence, W = 0. Consequently, (M, L) is of scalar curvature. Con-
versely, let (M, L) be of scalar curvature, then WZ = 0 which leads to WZ’]‘ = 0, hence,

(M, L) is of scalar curvature. O

In the Riemannian case the term “of scalar curvature” reduces to the term “of
constant curvature”. Thus , we generalize Yasuda and Shimada’s result [24].

Corollary 5.8. Under a generalized 3-conformal change, if ¢; = 0 and (M, L) is
Riemannian, then the Finsler space (M, L) is of scalar curvature if and only if (M, L)
is of constant curvature.
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